### INSTITUTIONS TO COPE HYDROLOGICAL VARIABILITY: CASES FROM PAKISTAN

Muhammad Asif Kamran; Ph.D.

Chair Agri. Policy

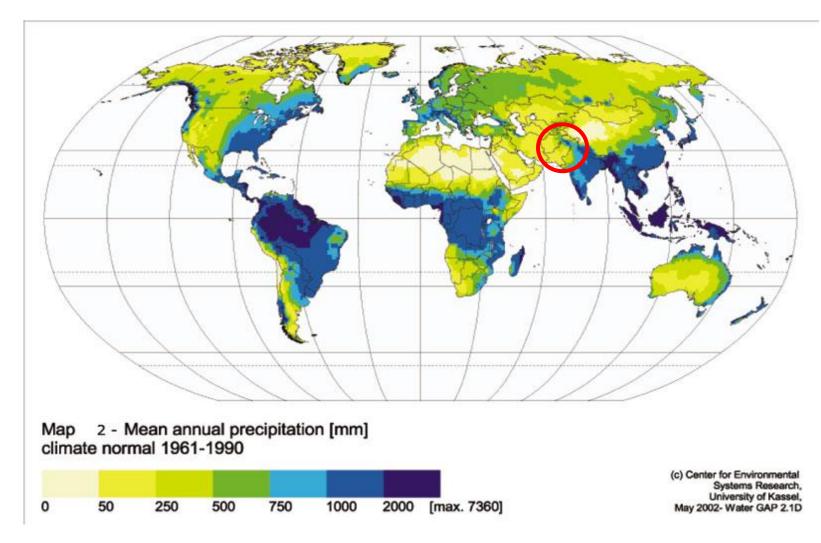
Centre for Advanced Studies in Agriculture and Food Security, Univ. of Agri. Faisalabad

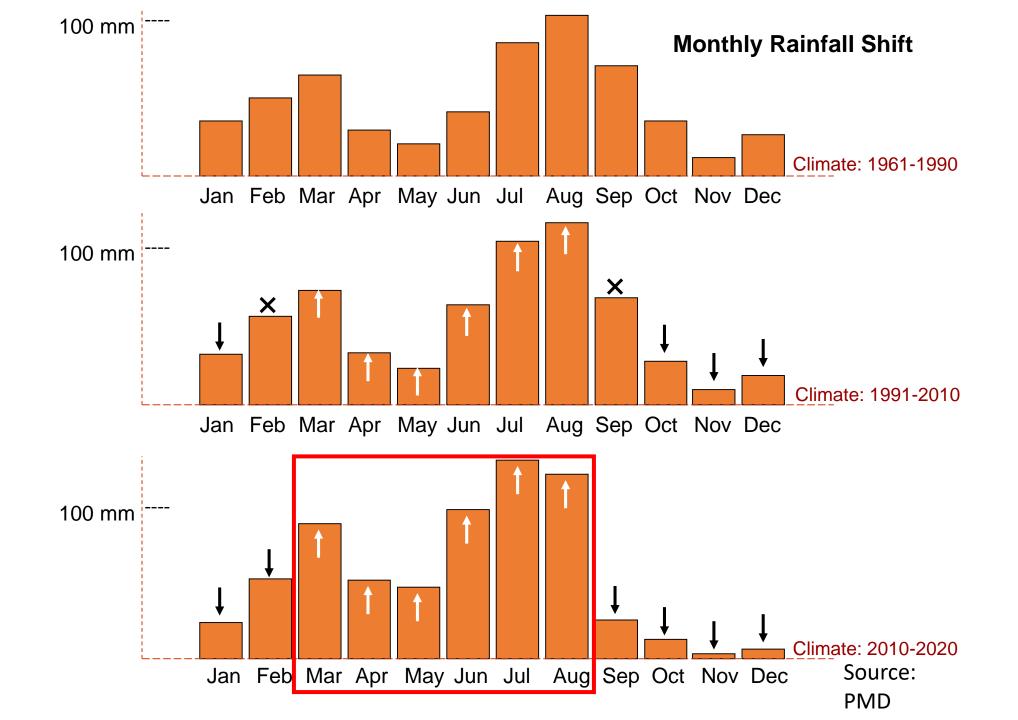
#### Farhad Zulfiqar; Ph.D.

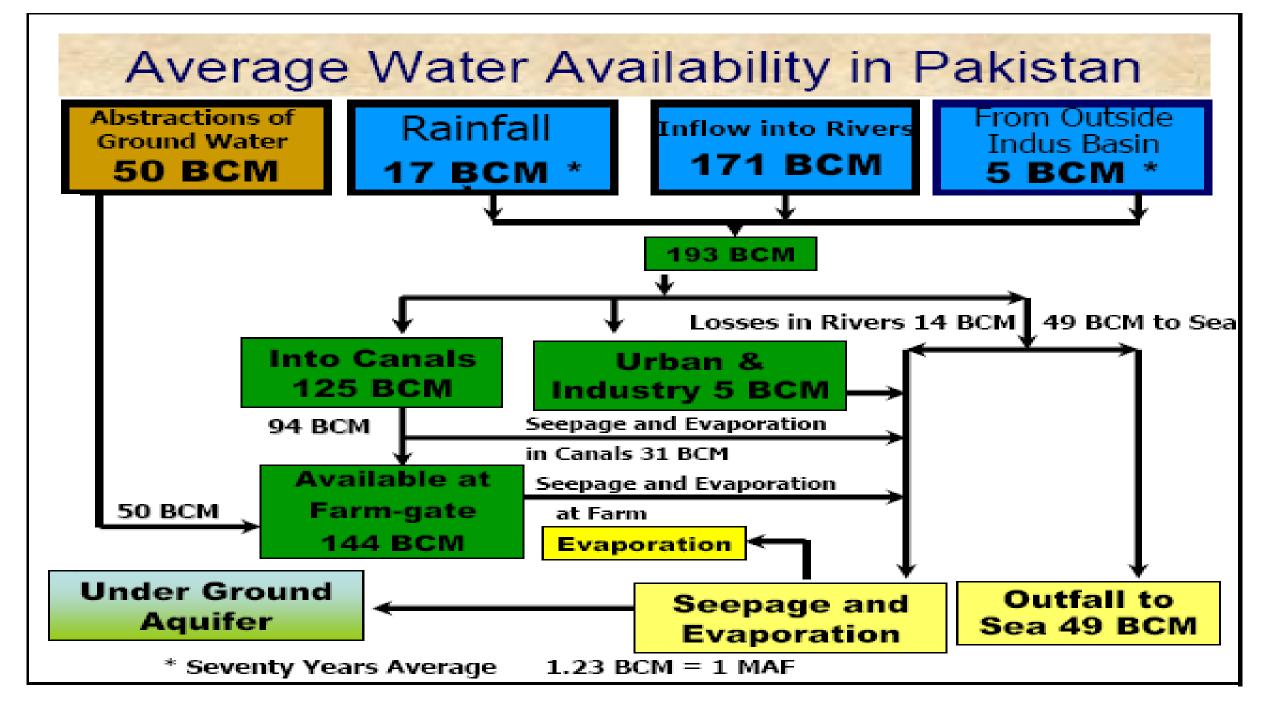
Assistant Professor COMSATS University Islamabad, Pakistan

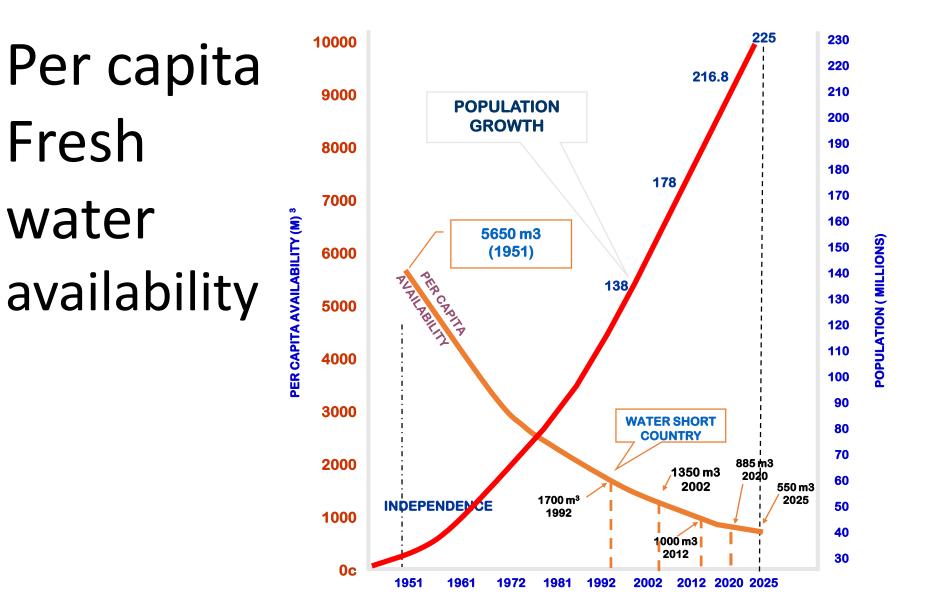


COMSATS University Islamabad





### Hydrological Variability


- Hydrological variability and scarcity are major issues in irrigated agriculture in arid/semi-arid environments
- The cases of success provide low hanging fruits to learn lessons for improvement
- The cases in this presentation show different levels of hydrological variability and institutions to cope it

### **Precipitation Variability**









### **Diversity in irrigation systems**

- Huge variation in agro-ecological conditions i.e. from sea level to K-2.
- Largest contiguous irrigation system in the world
- Small scale irrigation systems are found in all ecologies majorly in arid and semi arid zones.
- Large irrigation systems get huge attention due to transboundary and hydroelectric issues
  - More attention in term of supporting public goods (crop varieties, agronomic packages etc.) given to resource rich large systems
  - Agri. subsidies support large systems
- Small irrigation systems in Pakistan get less focus in research and academic circle, getting a status of 'Orphanage'

### Sources of Hydrological Variability in Large System - IBIS

- Storage is mostly blamed for irrigation water scarcity in Indus Basin Irrigation System
- There are huge inter and intra-canal variations depending on location of farm
- This has resulted in water logging due to excess water in some areas and left other areas with aridity and salinity due to heavy reliance on underground saline water
- The existing institutional architecture failed to resolve system wide inequity and variabilities

### Institutional structure in large system - IBIS

Despite of huge investments in physical infrastructure, the systems are increasingly facing under-performance:

- Too many institutions with little responsibility
- Too many laws without proper enforceability
- Poor institutional capacity
- Top down management little role of users in system management
- Water is not seen as socio-economic good but more as an engineering artifact

### **Governance Institutions**

#### • Federal

- Ministry of water and power
- Min. of Science and Technology
- Min. of Agriculture
- Min. of Environment
- Atomic Energy Commission
- WAPDA, IRSA, FFC, CEA
- IWASRI
- PCRWR
- Federal Water Management Cell

### Provincial

- Irrigation departments
- PIDAs
- Local government dept.
- Line agencies

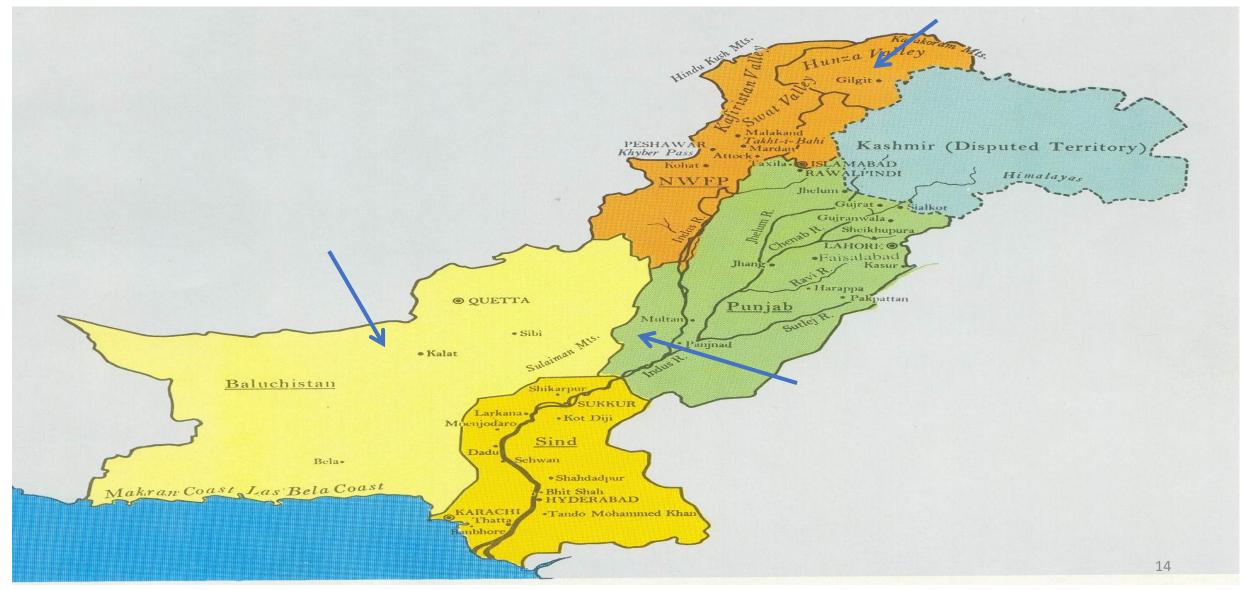
### Laws and Regulations

#### • Federal

- WAPDA Act 1958
- Water Accord 1991
- IRSA ACT 1992
- Environment Act 1992
- Council of Common Interests (Constitutional body)

#### Provincial

- Irrigation and Drainage Act 1873
- Punjab Soil Reclamation Act 1952
- Balochistan Water Ordinannce 1980
- Water Users Association Act 1982
- PIDAs Atc 1997


## **Small Systems**

•Spate/flood irrigation systems in Punjab and KPK and Balochistan provinces

### Karezes in Balochistan

•Snowmelt/Stream flow systems in Northern Areas (Gilgit)

## **Study Sites**



# **Spate Irrigation Systems**

- Spate Irrigation (locally named as *Rod Kohi*) is a flood water harvesting and management system where flood water is generated by heavy rainfall in upper catchments and it is unpredictable in occurrence and unreliable in amount.
- These systems have inherent extreme hydrological variability due to their reliance on rainfall
- The nature of farming in spate irrigation and challenges to collective action are different from large irrigation systems:

≻High uncertainty about water

➢ Probability of getting water not evenly distributed across systems

Reactive water rights better suited to manage uncertainty

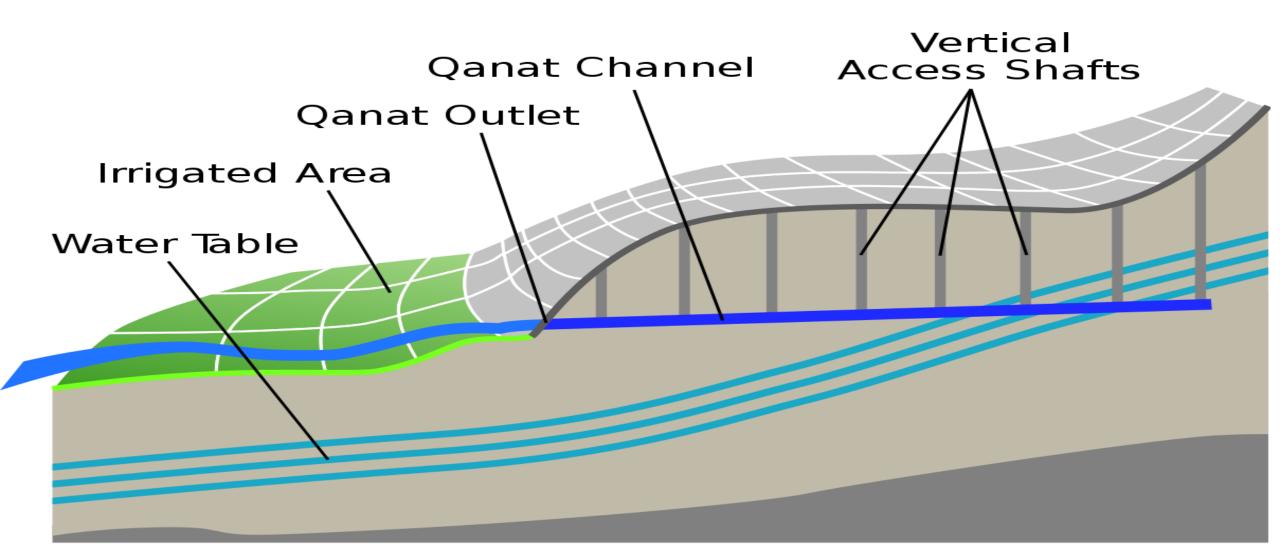
## **Spate irrigation Systems..cont.**










# Spate systems —Self-governance and sustainability to cope hydrological variability

- Presence of conditions of design principles (resource and user boundaries, local monitoring, local conflict resolution etc.)
- Reactive and flexible water rights crafted by users
- •Hydrological variability spread to all users

# Karez Irrigation Systems (Balochistan province)

- Karez is an indigenous method of irrigation in which groundwater is tapped by a tunnel through gravity flow
- After running for some distance the tunnel comes out in the open and the water is conducted to the command area

# Karez Irrigation Systems (Balochistan province)



# Karez Irrigation Systems (Balochistan province)

- Karez irrigation is practiced in 22 countries from China to Chile including Pakistan. In Pakistan it is confined to the province of Balochistan which has a tribal society
- Currently, 15 million hectares (6% of World's irrigated lands) are irrigated by Karez system: half of the area is situated in Iran and the rest in other countries (Afghanistan, Pakistan, Azerbaijan, Oman, Morocco, and Mexico)

### Karez Irrigation..Contd.

- Importance attached to irrigation from Karez systems may be gauged from local saying: 'A mosque should be demolished if it obstructs the course of Karez (Makran District Gazetteer, P-187, published 1906)
- In Balochistan, until 1970, around 3000 Karez systems were in use, providing water supply to farmers
- Only few partially functional karezes found now

### Karez Irrigation.. Sources of disturbance

- Subsidy on Electricity by Government
- No public-sector programs to improvise the traditional Karez systems
- Some Karez systems are still working in Balochistan where due to lack of electricity and tube-well subsidy, the groundwater table remained stable
- Karez systems successful worked for centuries due to a well defined group of users with water rights, local monitoring and conflict resolution mechanisms (most of the Ostrom's Design Principles)
- The decline of Karez systems also resulted in erosion of social capital and self governance

### Snow melt irrigation systems in HKH

- Northern Pakistan is meeting point of the mighty mountains ranges i.e. Hindukush-Karakoram-Himalyas
- Tops of these mountains are covered with snow.
  Summer is mild and winter is cold
- Rivers flow far below the cultivable land, entire dependence is on streams/Nallahs/Kuhls fed by glacial melt water
- Variation in flow as sometime flows entirely dry up and other time freeze entirely

### Snow melt systems--Contd

- Kuhls/Eels (irrigation channels) were made by early settlers, Mirs, and Rajas
- Each channel/kuhl commands a scheme, which is maintained through active participation of water users.
- Rajaki (traditional system of kuhl management) is used for kuhls management (maintenance, water distribution etc.)
- Huge investment in repair, de-silting of channels and is managed by villagers themselves even after the abolition of feudal systems in area since 1970
- Interventions of the public-sector institutions are minimal and limited to failed physical infrastructures

# Snow melt irrigation systems—Sources of sustainability

- Aga Khan Rural Support Program played pivotal role to build local community of water users in majority of the snow melt systems
- AKRSP used a proper mix of scientific and traditional knowledge
- Series of meeting and dialogues between technical experts, social organizers and communities to make a best fit
- AKRSP also help communities to bring more area under cultivation so as to keep farming competitive under increasing population and commercialization, through minimum 75% votes in favor of any decision

### **Summary-Synthesis**

| System                                  | Infrastructural<br>Interventions                                    | Impacts                                                                                                | Capacity to cope<br>hydrological variability |
|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Spate (settled areas of<br>Punjab)      | State Law and<br>management<br>interference; concrete<br>structures | Deteriorating collective<br>action; devastated<br>concrete diversions;<br>conflicts among<br>community | Poor                                         |
| Spate (Tribal areas of<br>Punjab)       | Customary rules; Local<br>material based<br>diversion structures    | Strong collective action;                                                                              | Good                                         |
| Karezes (Electricity reaches areas)     | Electricity subsidy to<br>promote agri<br>production                | Deep water table and dried karezez                                                                     | Poor                                         |
| Karez (no tubewell installations areas) | Traditional karez based social structure                            | Strong collective action and self governance                                                           | Good<br>27                                   |

#### Summary-Synthesis..Contd.

| System               | Infrastructural<br>Interventions                                | Impacts                                                  | <b>Overall condition</b> |
|----------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------|
| Snow-melt<br>systems | AKRSP work<br>honoring<br>indigenous<br>knowledge               | Strong local<br>action and<br>improved<br>livelihoods    | Very Good                |
|                      | Government<br>intervened in<br>form of irrigation<br>structures | Structures not<br>matching the<br>system<br>requirements | Poor                     |

### Institutions to Cope Hydrological Variability

- Different systems need different interventions based on biophysical and social context no 'one size fits all' policy
- The large canal system failed to harvest social capital around irrigation system despite of efforts through Irrigation Management Transfer
- Some small local systems have successfully handled extreme hydrological variability through locally evolved institutions – e.g Spate irrigation systems
- State interventions without consideration of local context and hydrological principles results in drastic failure (case of electricity subsidy in Karez command areas)

### Institutions to Cope Hydrological Variability

- Institutions based on scientific principles and indigenous knowledge make successful case for sustainable irrigation systems (case of Snowmelt systems)
- Failure of large systems in minimizing variability is due to poor local and transboundary institutional arrangements
- External efforts to transfer irrigation management is not successful without consideration of local context and issues
- External assistance can be beneficial provided:
  - Local knowledge and scientific knowledge are mixed to best fit the problem
  - State bureaucracy and line departments should not challenge collectively decided resource institutions
  - Systems specific R&D is needed to meet local needs through proper research



# COMSATS University Islamabad



### **Questions & Comments**

#### farhaduaf@gmail.com;

farhad.zulfigar@comsats.edu.pk